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Abstract
We discuss exact functional integral expressions for many-body matrix
elements of the type 〈ψ,A|e−βĤ|ψ,A〉, between particle number projected
Hartree–Fock–Bogoliubov(HFB) wavefunctions with time-reversal symmetry.
A proof of positivity is given for a class of Hamiltonians and when the HFB
wavefunctions with time-reversal symmetry are particle number projected to
an even number of particles. We show explicitly how to reduce the propagator
in the functional integral to a Hermitian positive definite propagator for particle
pairs. This result generalizes that previously obtained using Bardeen–Cooper–
Schrieffer wavefunctions.

PACS numbers: 05.30.−d, 02.70.Lq, 21.60.Ka

1. Introduction

Using the knowledge of many-body matrix elements of the type

B = 〈ψ,N,Z|e−βĤ |ψ,N,Z〉 (1)

where Ĥ is the many-body Hamiltonian of N and Z interacting neutrons and protons and
|ψ,N,Z〉 is an input many-particle state having particle number N, Z, in the limit of large β,
we can calculate ground-state properties.

Recently, a functional integral formalism, which gives expressions for the above matrix
elements, has been introduced in the context of Monte Carlo calculations, for the pairing plus
quadrupole model [1] using functional integrals containing pairing fields. This formalism
is sufficiently general to allow the calculation of a broad class of wavefunctions, namely
wavefunctions which are exponentials of linear forms in pair creation operators.

In [2] it was shown that the integrand in the functional integral obtained in the density
decomposition for the pairing plus quadrupole model is always positive for an even number of
particles, provided that the input state |ψ〉 is a Slater determinant with time-reversal symmetry.
An obvious limitation of the proof of [2] is that the best known approximation to the nuclear
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wavefunction is the Hartree–Fock–Bogoliubov(HFB) approximation, rather than the Hartree–
Fock (HF) approximation. Besides, the analysis of [2] is limited to Slater determinants, and
it cannot be used for trial wavefunctions with built-in pairing correlations, such as HFB
wavefunctions.

The purpose of this paper is precisely to remove such a limitation.
In [3], as an application of the formalism of [1], we have shown that if the input state

|ψ〉 is of the Bardeen–Cooper–Schrieffer (BCS) type, which has exact angular momentum
and parity 0+, the functional integral with the same density decomposition used in [2] can be
rewritten in terms of a Hermitian positive definite evolution operator for particle pairs and, of
course, it is positive.

Here we apply the methods of [1] in order to extend the proof of [3] to the more general
case for the input wavefunction, that is, any particle number projected quasi-particle vacuum
with time-reversal symmetry. The resulting functional integral is positive definite and the
propagator is still Hermitian positive definite and it refers to particle pairs as in [3]. We also
discuss, as a particular case, Slater determinants, and again we show that the above result still
holds. We give detailed proofs of the above statements.

These proofs are a consequence of the methods introduced in [1] but, rather than simply
selecting the relevant cases out of the general formulae of [1, 3], it is just as economical
to redo the derivation done in [1, 3] in the special case of the density decomposition for
complex wavefunctions. Since nowhere in [1, 3] was the concept of quasi-particles used,
we also rephrase the standard HFB wavefunctions using only particle concepts, rather than
quasi-particles. The functional integrals we obtain for the matrix elements of equation (1)
are new. In the following sections, we recall the class of Hamiltonians, and we discuss the
functional integral, the type of wavefunction and finally we give the proof.

2. The class of Hamiltonians, the functional integral and the trial HFB wavefunctions

We consider only one particle species with Hamiltonian

Ĥ = Ĥ0 −
∑
a

ka

2
Q̂2
a (2)

where Ĥ0 = ∑
ij a

†
i (h0)ij aj is the one-body term, and the two-body potential is written as a

sum of squares with strength ka > 0. Q̂a (not necessarily, or not just the quadrupole operators)
are one-body operators, i.e. in the notation of second quantization, Q̂a = ∑

r,s(qa)rsa
†
ras . The

pairing plus quadrupole Hamiltonian can be rewritten in this form with the pairing interaction
written as −G/2∑ij>0

[(
a
†
i aj + a†

ī
aj̄
)2 − N̂

]
, where N̂ is the particle number operator and

the state ī is the time-reversal partner of the state i. The single-particle space is separated
into two subspaces h+ and h−. The states belonging to h+ have quantum numbers nljm with
the m values differing from each other by two units. The states belonging to h− are the
time-reversal partners of the states in h+ and these are related to the states in h+ by the relation
|nljm〉 = (−1)j+1/2|nlj −m〉. The notation i > 0 means that the state i belongs to h+. The
time-reversal operator changes the states in h+ into the states in h− and the states in h− into
the opposite of the states in h+.

Unless stated otherwise, matrix indices run first over the h+ states and then over the h−
states.

On this basis, the matrices h0 and qa have the following form,(
r s

−s� r�

)
(3)
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where each of the submatrices r, s,−s� and r� represents the matrix elements between the
single-particle states (i, j) , (i, j̄ ), (ī, j ) and (ī, j̄ ), respectively. The number of single-particle
states forming the basis is denoted by Ns .

We consider Hamiltonians written in the separable form of equation (2), for which the
single-particle matrix elements are in the form (3). This class of Hamiltonians was considered
in [2], for which a proof of positivity of the functional integral was given.

The functional integral expression for e−βĤ is given by [4]

e−βĤ = e−βGN̂/2N
∫ Nt∏

n=1

∏
a

dσan e− ε
2

∑
an kaσ

2
an Û (4)

where Û is the second quantized imaginary time propagator

Û = ÛNt ÛNt−1...Û1 (5)

with

Ûn = e−ε[Ĥ0−
∑

a kaσanQ̂a ] n = 1, . . . , Nt . (6)

N is the normalization constant

N =
∏
a

(
εka

2π

) Nt
2

. (7)

Nt is the number of time intervals and ε = β/Nt . Equation (4) becomes exact in the limit
ε → 0. The functional integral of equations (4)–(6) differs from the functional integral used
in [1], which was written in terms of pairing fields and does not conserve the number of
particles. The technique used in [1] nonetheless also applies to this functional integral in a
straightforward way, which is discussed below.

We denote second quantized operators by capitals with a hat symbol and their
corresponding first quantized operators by small letters, for example Q̂a = ∑

rs(qa)rsa
†
ras .

Inserting equation (4) into equation (1), for A particles we have

B = e−βGA/2N
∫ Nt∏

n=1

∏
a

dσan e− ε
2

∑
an kaσ

2
an〈ψ,A|Û |ψ,A〉. (8)

This equation is sometimes called the functional integral in the density decomposition [2],
since only terms such as a†ras appear in equations (5) and (6). Having selected the type of
functional integral, we have to evaluate the following matrix elements:

M = 〈ψ,A|Û |ψ,A〉. (9)

As input wavefunctions for an even system, we consider

|ψ〉 = V̂ |0〉 (10)

with

V̂ = exp

[
1

2
(a† a)

(
R11 R12

R21 R22

)(
a

a†

)]
(11)

where we have used a matrix notation, and (a†, a) is a row vector composed of all creation
and all annihilation operators. The matrices Rij (i, j = 1, 2), general for the time being, must
satisfy the relations R22 = −R̃11 and R̃ij = −Rij (i �= j = 1, 2) and are of dimension Ns .
The state |ψ〉 in equation (10) does not have a definite number of particles and therefore will
be particle number projected in order to be used in equation (9).
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This state is usually interpreted as the vacuum for the following quasi-particle operators

bi = V̂ aiV̂
−1 i = 1, . . . , Ns (12)

since they satisfy the relation bi |ψ〉 = 0. The quasi-particle creation operators are defined as

b̄i = V̂ a
†
i V̂

−1 i = 1, . . . , Ns (13)

and coincide with the ordinary creation operators if V̂ is unitary. More directly, in matrix
notation, the relation between the particle and quasi-particle operators is given by [5](

b

b̄

)
= V

(
a

a†

)
(14)

where

V = exp

(
R11 R12

R21 R22

)
≡
(
V11 V12

V21 V22

)
. (15)

The dimensionality of V is 2Ns . Equations (12)–(14) represent a way of moving particle
creation and annihilation operators to the left or to the right of operators such as V̂ . The
transformation V is now restricted, by the requirement of time-reversal symmetry, to have
submatrices of the following form,

Vi,j =
(
(Vij )rs (Vij )rs̄

−(Vij )�rs̄ (Vij )
�
rs

)
i, j = 1, 2 (16)

where Vij has been explicitly written in terms of the submatrices in the (h+, h+), (h+, h−),
(h−, h+), (h−, h−) subspaces, respectively.

As discussed in [5], any operator V̂ , as in equation (11), can be written as a product of
three special transformations

V̂ = V̂ cV̂ 0V̂ d (17)

where V̂ c = exp
(

1
2 a

†Xa†
)
, V̂ 0 ∝ exp(a†T a) and V̂ d = exp

(
1
2 aYa

)
, provided V22 is

nonsingular, with appropriate matrices X, Y and T. Inserting equation (17) into equation (10),
apart from a normalization constant we obtain

|ψ〉 = e1/2a†Xa† |0〉. (18)

This state is invariant under time-reversal transformation. We can always consider nonsingular
V22 and treat the case detV22 = 0 as a limit of vanishingly small singular values of the matrix
X.1 The explicit expression of the antisymmetric matrix X in terms of the Vij is

X = V12V
−1

22 . (19)

Mathematically, the fact that equation (19) gives an antisymmetric matrix X follows from the
relation (

0 1
1 0

)
Ṽ

(
0 1
1 0

)
V = 1 (20)

valid for any matrix V of the type given in equation (15) for antisymmetric R12 and R21 and
with R11 = −R̃22.

Since all matricesRij in equation (15) have the structure of class (3) and since the product
and the inverse of a matrix of class (3) belong to the same class, it follows that the matrix X

1 The singular values si � 0 of a matrix M are defined by the relation M = USU ′ where U and U ′ are unitary
matrices and S is a diagonal matrix with non-negative entries si . The matrices U and U ′ diagonalize MM† andM†M
respectively with eigenvalues s2

i .
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also belongs to class (3). According to a theorem of [6, 7], any arbitrary antisymmetric matrix
X, of even dimensionality, can be written in the canonical form

X = d̃

(
s 0
0 s

)(
0 1

−1 0

)
d (21)

where d is unitary and s is diagonal (with dimensionality Ns/2) with non-negative diagonal
entries si . The numbers si , sī are the singular values of the matrix X and are pairwise
degenerate. It easy to see that the unitary matrix d belongs to class (3). This is because d
diagonalizes the Hermitian matrix X†X which belongs to class (3) and which is known to be
diagonalizable by a matrix of this class.

In order to see that the most general time-reversal HFB state is given by equation (18) for
a generic matrix X, we have to show that this wavefunction can display a ‘blocked structure’
and a pairing structure [8]. To see this, we insert equation (21) into equation (18), then

|ψ〉 = e
∑

i>0 c
†
i si c

†
ī |0〉 (22)

where i and ī (i > 0) refer to a pair of degenerate singular values. The new particle creation
operators c† in equation (22) are given, in matrix notation, by

c† = da†. (23)

Therefore, expanding the exponential in equation (22)

|ψ〉 =
∏
i>0

(
1 + sic

†
i c

†
ī

)|0〉. (24)

If some of the singular values s become very large, with sb denoting these large singular values,
apart from a normalization constant we have

|ψ〉 =
(∏
b>0

c
†
bc

†
b̄

)∏(
1 + sic

†
i c

†
ī

)|0〉 (25)

which displays the blocked structure of the wavefunction. These consideration imply that
any time-reversal HF or more general HFB state can be recast in the appealing form given
by equation (18) without referring to quasi-particles. The form of equation (18) is the
most economical way of writing the wavefunction of equation (10), since the redundancy in
equation (10) is reduced to an overall scale factor2 of the matrix X. If one considers unitary
operators V̂ , |ψ〉 is still given by equation (18) with arbitrary X, that is, the constraint of
unitarity for the matrix V does not imply any constraint for X. This can be seen by evaluating
the matrix X, with equation (18), when the matrix V is unitary. In fact, the Bloch–Messiah
decomposition for an arbitrary unitary matrix V of the type given in equation (15) (see [7, 8])
gives

V =
(
d ′ 0
0 d ′�

)(
ū v̄

v̄ ū

)(
c′ 0
0 c′�

)
.

Here c′ and d ′ are arbitrary unitary matrices; the matrix ū is diagonal with diagonal matrix
elements u1, u1, u2, u2, . . . , 1, 1, . . . ; and the matrix v̄ is block diagonal of the form

v̄ =




0 v1

−v1 0
0 v2

−v2 0
0

. . .




2 We are only interested in the component of |ψ〉 that has A particles: (a†Xa†)A/2|0〉. Therefore the overall
normalization of the wavefunction is the scale of the matrix X.
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with u2
i + v2

i = 1. Here the basis is ordered as 1, 1̄, 2, 2̄, . . . rather than 1, 2, . . . , 1̄, 2̄, . . . . In
the matrix ū we have replaced entries with 0 with vanishing small uk and in the matrix v̄ we

have replaced the unit diagonal matrix elements with the matrices

(
0

√
1 − u2

k

−
√

1 − u2
k

0

)
.

A zero diagonal matrix element in ū would generate an occupied (‘blocked’) single-particle
state in the quasi-particle vacuum. But we can do just the same by considering vanishingly
small positiveuk , since the limiting form of the quasi-particle vacuum is the same. There are an
even number of these occupied single-particle states in the quasi-particle vacuum since we
are considering an even nucleus. Using the Bloch–Messiah form for V and equation (19), we
obtain equation (21), apart from renaming the rows and columns and provided we identify the
singular values of X with vk/uk , without any condition on the matrix X.

Equation (18) is reminiscent of the Thouless theorem (see [8]), although the wavefunction
that we have obtained is written in terms of particle operators and of the particle vacuum, rather
than in terms of quasi-particle operators and the corresponding vacuum as in the Thouless
theorem. Therefore, in the following, the concept of quasi-particles is no longer used.

To summarize, a HFB wavefunction can be defined quite generally as equation (18) with
an unrestricted antisymmetric matrix X, for unitary or non-unitary transformations V .

To evaluate the matrix elements of equation (9) let us first introduce the operator

P̂ = eαN̂ = zNs/2 exp

[
1

2
(a†a)

(
α 0
0 −α

)(
a

a†

)]
(26)

where z = eα is the fugacity and N̂ is the particle number operator. Then we evaluate the
fugacity-dependent matrix elements

M′(z) = 〈0|V̂ †P̂ Û V̂ |0〉 (27)

and finally isolate the coefficient of zA in equation (27). Note that the operator P̂ in
equation (26) has been written in the form of equation (11). The evaluation of equation (27)
and the construction of Hermitian positive definite propagators for particle pairs is done in
next section.

3. Evaluation of M and construction of the pair propagator

We use the fundamental property of operators such as V̂ in equation (11). In other words,
to any operator V̂ , of the type of equation (11), there is a corresponding matrix V given by
equation (15) and this correspondence preserves the multiplication; i.e. if V̂ 3 = V̂ 2V̂ 1, then
V3 = V2V1. Let us then rewrite the propagator Ûn in the form of equation (11) as

Ûn = Ŵ ncn (28)

with

Ŵ n = exp

[
1

2
(a†, a)

(−εhn 0
0 εh̃n

)(
a

a†

)]
(29)

and

cn = e− ε
2 Tr(hn) hn = h0 −

∑
a

kaσanqa. (30)

Therefore, the matrix corresponding to Ŵ n is

Wn =
(
Wn11 0

0 Wn22

)
(31)
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with

Wn11 = e−ε[h0−
∑

a kaσanqa ] (32)

and

Wn22 = eε[h̃0−
∑

a kaσanq̃a ]. (33)

Thus, the evolution operator in equation (4) is

Û = cŴ c =
∏
n

cn Ŵ =
∏
n

Ŵ n (34)

and the matrix corresponding to Ŵ is

W =
(
W11 0

0 W22

)
=
(∏

n Wn11 0
0

∏
n Wn22

)
. (35)

In the above equations, the products are time-ordered; moreover we have

W22 = W̃−1
11 . (36)

Finally, we use the result obtained in [5] concerning the vacuum expectation values of any
operator of the type of equation (11)

〈0|V̂ |0〉 = [det(V22)]1/2 (37)

where V22 is the (2, 2) submatrix of the matrix V corresponding to V̂ . Equation (27) then
becomes

M′(z) = zNs/2c〈0| e−1/2aX�a exp

[
1

2
(a†, a)

(
α 0
0 −α

)(
a

a†

)]
Ŵ e1/2a†Xa† |0〉. (38)

The matrix W ′, which corresponds to the product of the operator in equation (38), is the
product of the matrices which correspond to each factor. Therefore

W ′ =
(

1 0
−X� 1

)(
z 0
0 1/z

)(
W11 0

0 W22

)(
1 X

0 1

)

=
(

zW11 zW11X

−zX�W11
1
z
W22 − zX�W11X

)
.

(39)

Hence, equation (37) gives

M′(z) = czNs/2
[

det

(
1

z
W22 − zX�W11X

)]1/2

. (40)

We can factor out the term 1
z
W22 in the determinant of equation (40) and obtain

M′(z) = c det[W22]1/2
[
det
(
1 − z2W−1

22 X
�W11X

)]1/2
. (41)

Finally, using the relation detW22 = ∏
n det(Wn)22 = exp[ε

∑
n Tr(hn)] = c−2, with c defined

by equations (34) and (30), and using equation (36), we have

M′(z) = [det(1 − z2W̃ 11X
�W11X)]1/2. (42)

We now use the canonical representation of the matrix X of equation (21), and we use the fact
that, for matrices of class (3), the following identity holds(

r s

−s� r�

)(
0 1

−1 0

)
=
(

0 1
−1 0

)(
r s

−s� r�

)�
. (43)
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That is, we can move to the left or to the right of any matrix of class (3), the matrix

(
0 1

−1 0

)
,

by taking the complex conjugate. Equation (42) then becomes

M′(z) = [det(1 + z2Y†Y)]1/2 (44)

where

Y =
(√

s 0
0

√
s

)
d�W11d̃

(√
s 0

0
√
s

)
. (45)

In obtaining equation (45) we have used the matrix identity det(AB) = det(BA). The matrix
Y†Y is Hermitian and positive definite and its eigenvalues, which we denote as y2

1 > y2
2 > · · · ,

are the square of the singular values of the matrix Y . Since M′(z) must be a polynomial in
z2, these eigenvalues must form degenerate pairs. Selecting one eigenvalue for each pair, we
evaluate the square root of the determinant in equation (44) as

M′(z) =
∏′

i

[
1 + z2y2

i

]
(46)

where the prime in the product means that only one eigenvalue appears for each degenerate
pair. In equation (46) there is no additional sign associated with the square roots of the various
determinants in equation (41). This is because (see [3]), since M′(z)must be a polynomial in
z, it is a continuous function of z. Therefore, any additional sign associated with the square
roots in equation (41) is independent of z. For z = 0 we have only vacuum matrix elements in
equation (9), and therefore M = 1; this is the same in equation (46). Therefore, the various
roots in equation (41) do not introduce additional signs.

The coefficient of zA in the product gives the desired value of M and it is obviously
positive. At very low temperature, the dominant term is obtained by considering only the first
A/2 eigenvalues and we obtain

M = y2
1y

2
2 . . . y

2
A/2. (47)

These results generalize those obtained in [3], which correspond to the choice d = 1 in
equation (21). The matrix Y†Y is the propagator for particle pairs, while the propagator for
particles is Y . Its spectrum depends on the choice of the matrix X. Equation (46) is formally
analogous to the fermionic partition function in the grand canonical ensemble of a gas of
particles with energies −2(ln yi)/β, and each of these fermions is a particle pair. Although
we always select HFB wavefunctions, the results are obviously valid even if no variational
requirements are imposed in the choice of X.

If we consider the following choice for the singular values of X

s1 = s2 = · · · = sA/2 	 1 sA/2+1 = sA/2+2 = · · · = sNs/2 = 0 (48)

|ψ〉 becomes a Slater determinant for A particles (see equation (25)). Equation (46) (more
precisely the coefficient of zA in the expansion of the product) gives the matrix elements in
equation (9) when the wavefunction is a Slater determinant. The choice of the matrix d in
equation (21) then selects the particular Slater determinant, e.g. the self-consistent HF Slater
determinant.

In the HFB approximation, both the singular values of X and the unitary matrix d
are determined variationally, while only the latter is determined in the HF approximation.
It is worth comparing the result for the matrix elements M, just obtained, with the proof
of positivity given in [2]. The main differences are the following. First of all, only Slater
determinants were considered in [2] and the matrix elements were expressed as a positive
determinant of a matrix of class (3); in such a case the eigenvalues of such a matrix appear
in complex conjugate pairs. In our case instead, we obtain a Hermitian positive definite
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matrix, which in some sense is the square of a propagator, and each eigenvalue represents the
contribution of a pair to the matrix elements of equation (9). The eigenvalues that are relevant
here are the eigenvalues of the pair propagator (see equation (46)), and these are the square
of the singular values of the particle propagator. Moreover, our analysis is valid for any HFB
wavefunction which is time-reversal invariant, with or without particle number projection.
It should be noted that, usually, in functional integrals the propagators which appear in the
integrand are of rather general type and they certainly do not have a Hermitian character; the
formulations we have constructed instead have precisely such a feature. It should also be
noted that this analysis reveals the physical meaning of the singular value decomposition of
the propagators used in [2] for numerical stability in Monte Carlo calculations.

References

[1] Puddu G 2000 Eur. Phys. J. A 9 171
Puddu G 2001 Phys. Rev. C 64 034318

[2] Lang G H, Johnson C W, Koonin S E and Ormand W E 1993 Phys. Rev. C 48 1518
[3] Puddu G 2001 J. Phys. G: Nucl. Part. Phys. 27 L73
[4] Hubbard J 1959 Phys. Rev. Lett. 3 77

Stratonovich R D 1957 Dokl. Akad. Nauk. SSSR 115 1907
[5] Balian R and Brezin E 1969 Nuovo Cimento B 64 37
[6] Zumino B 1962 J. Math. Phys. 3 1055
[7] Bloch C and Messiah A 1962 Nucl. Phys. 39 95
[8] Ring P and Schuck P 1980 The Nuclear Many-Body Problem (New York: Springer)


